Fusion of hard and soft information in nonparametric density estimation
نویسندگان
چکیده
This article discusses univariate density estimation in situations when the sample (hard information) is supplemented by “soft” information about the random phenomenon. These situations arise broadly in operations research and management science where practical and computational reasons severely limit the sample size, but problem structure and past experiences could be brought in. In particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum likelihood estimator that incorporates any, possibly random, soft information through an arbitrary collection of constraints. We illustrate the breadth of possibilities by discussing soft information about shape, support, continuity, smoothness, slope, location of modes, symmetry, density values, neighborhood of known density, moments, and distribution functions. The maximization takes place over spaces of extended real-valued semicontinuous functions and therefore allows us to consider essentially any conceivable density as well as convenient exponential transformations. The infinite dimensionality of the optimization problem is overcome by approximating splines tailored to these spaces. To facilitate the treatment of small samples, the construction of these splines is decoupled from the sample. We discuss existence and uniqueness of the estimator, examine consistency under increasing hard and soft information, and give rates of convergence. Numerical examples illustrate the value of soft information, the ability to generate a family of diverse densities, and the effect of misspecification of soft information.
منابع مشابه
Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملUW CENTER FOR PATTERN ANALYSIS AND MACHINE INTELLIGENCE GRADUATE SEMINAR SERIES Distributed Random Finite Set Theoretic Soft/Hard Data Fusion: Target Tracking Application
The development of data fusion systems capable of incorporating soft humangenerated data into the fusion process is an emerging trend in the fusion community, motivated mainly by asymmetric warfare situations where the observational opportunities for traditional hard sensors are restricted. This paper describes an extension of our prototype soft/hard data fusion system, based on RFS theory, fro...
متن کاملA Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کاملEstimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...
متن کاملSpectral Estimation of Stationary Time Series: Recent Developments
Spectral analysis considers the problem of determining (the art of recovering) the spectral content (i.e., the distribution of power over frequency) of a stationary time series from a finite set of measurements, by means of either nonparametric or parametric techniques. This paper introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 247 شماره
صفحات -
تاریخ انتشار 2015